Hardware-in-the-loop Simulation Method for a Wind Farm Controller Using Real Time Digital Simulator

Abstract – A hardware-in-the-loop simulation (HILS) method for a wind farm controller using a real time digital simulator (RTDS) is presented, and performance of the wind farm controller is analyzed. A 100 MW wind farm which includes 5 MW wind power generation systems (WPGS) is modeled and analyzed in RSCAD/RTDS. The wind farm controller is implemented by using a computer, which is connected to the RTDS through transmission control protocol/internet protocol (TCP/IP). The HILS results show the active power and power factor of the wind farm, which are controlled by the wind farm controller. The proposed HILS method in this paper can be effectively utilized to validate and test a wind farm controller under the environment in practice without a real wind farm.

Keywords: Hardware in the loop simulation, Real time digital simulator, Wind farm controller

1. Introduction

Among the renewable energy such as wind turbines, photovoltaic, fuel cells, micro gas turbines, and, small hydro units, wind turbines have significantly increasing all over the world [1]. According to global wind energy council, a total of 282 GW is now installed in 2012, and an increase in installed cumulative capacity of a wind power generation system (WPGS) is about 18.6% compared to the previous year [2].

Increase of wind farm in power system affects the power balancing between generated and demanded power caused by unstable wind velocity [3]. Unstable wind velocity can cause significant variation in the system frequency that may affect grid system stability [4]. Hence, the grid system operators in many centuries such as Denmark, Germany, Spain, US, China, and so on requires grid code for a WPFGS or a wind farm [5, 6].

For satisfying the grid code, a wind farm controller (WFC) is needed because it requires the possibility for controlling active and reactive power in point of common coupling (PCC), continuous operation in a limited range, and rate limit operation. The WFC should have ability to sending out set points to all WPFGSs, and each WPFGS must be able to ensure set points from the WFC. It enables the wind farm to control active and reactive power in PCC [7].

Before the WFC is applied to the wind farm, it is difficult to evaluate and validate the WFC because of security problem of the power system, cost, and development time. This paper presents performance analysis method without a wind farm to evaluate a WFC using hardware-in-the-loop-simulation (HILS) using a real time digital simulator (RTDS).

A 100 MW wind farm which is composed of twenty 5 MW WPFGSs is modeled in RSCAD / RTDS for applying the proposed performance analysis method using HILS, and the modeled wind farm is simulated at real time by the RTDS. The control algorithm [8] of WFC is implemented using C# programming language in a computer. A communication interface between real time simulation and the WFC is also implemented through TCP/IP.

The HILS results show the active power and power factor at PCC of the wind farm controlled by the WFC. The dynamic performances of several wind turbines are also depicted when they are controlled by the WFC. Using the proposed HILS method, a newly designed and developed WFC can be effectively tested and validated under the environment in practice without a real wind farm.

2. Wind farm model

The configuration of a wind farm is depicted in Fig. 1, which is modeled in RTDS. A total rated power of the wind farm is 100 MW, and it has twenty WPFGSs, a substation.

It is made up of 5 MW variable speed WPFGS, which use a permanent magnet synchronous generator (PMSG) and a back-to-back voltage source converter. The WPFGS is connected to medium-voltage (MV) at 33 kV. The MV is boosted up to 154 kV by using two 60 MW step-up transformers. The substation is connected to the PCC through 20 km long cable. Table 1 shows parameters of the 100 MW modeled wind farm.
2.1 Modeling of wind power generation system

In this paper, a 5 MW variable speed WPGS is modeled in RSCAD/RTDS. The WPGS consists of the PMSG, whose stator winding is directly connected to a bidirectional frequency converter made up of two back-to-back IGBT bridge. However, there is a constraint of operation time and processor card [9] of the RTDS for implementing the real time simulation. For the reason, a simplified model of the WPGS [10] is considered as shown in Fig. 2, which includes a three phase current source and wind turbine model.

2.2 Modeling of wind turbine

In the case of the wind turbine model, the mechanical torque \(T_m \) of the turbine captured from the wind power can be calculated by

\[
T_m = \frac{1}{2} \rho \pi R^3 v^2 C_p(\lambda, \beta) / \omega
\]

where \(\rho \) is the air density (kg/m\(^3\)), \(v \) is wind velocity (m/s), \(R \) is the radius of blade (m), \(\omega \) is angular velocity (rad/s), \(C_p \) is power coefficient [11].

The power coefficient is a function of tip speed ratio (\(\lambda \)) and pitch angle (\(\beta \)) of the blade (degree) as follows (2).

\[
C_p(\lambda, \beta) = c_1 \left(\frac{c_2}{\lambda} - c_3 \beta - c_4 \right) \left(\frac{\lambda}{\lambda_1} \right)^{\frac{c_5}{c_6} + 1} - c_5 \lambda
\]

where \(c_1 = 0.5176, \ c_2 = 116, \ c_3 = 0.4, \ c_4 = 5, \ c_5 = 21, \ c_6 = 0.0068 \) [12]. Parameters of the 5 MW wind turbine model are given in Table 2. The maximum power coefficient \((C_{p,\text{max}}) \) is 0.48 when tip speed ratio is 8.1 (\(\lambda_{\text{opt}} \)).

The controller of maximum power point tracking (MPPT) calculates the power reference \((P_{\text{mppt}}) \), which is given by (3).

As in (4), the rotation speed of the wind turbine is used to determine the power reference of MPPT. In the case of over rated power, the power reference is limited to the 5 MW.

\[
P_{\text{mppt}} = \frac{1}{2} \rho \pi R^3 C_{p,\text{max}} \left(\frac{\lambda}{\lambda_{\text{opt}}} \right)^3 \omega^5
\]

Table 1. Parameters of 100 MW modeled wind farm

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind farm</td>
<td>Total rated power</td>
<td>100 MW</td>
</tr>
<tr>
<td></td>
<td>Number of wind turbine</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Distributed voltage</td>
<td>33 kV</td>
</tr>
<tr>
<td></td>
<td>Transmission voltage</td>
<td>154 kV</td>
</tr>
<tr>
<td>Substation</td>
<td>Number of Tr.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Rated power</td>
<td>120 MVA</td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td>33/154 kV</td>
</tr>
<tr>
<td>Feeder</td>
<td>Cable length</td>
<td>20 km</td>
</tr>
<tr>
<td></td>
<td>Resistance</td>
<td>0.19 Ω/km</td>
</tr>
<tr>
<td></td>
<td>Reactance</td>
<td>0.41 Ω/km</td>
</tr>
</tbody>
</table>

Table 2. Parameters of 5 MW wind turbine model

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated wind velocity</td>
<td>11.5 m/s</td>
</tr>
<tr>
<td>Radius of the blade length</td>
<td>60 m</td>
</tr>
<tr>
<td>Rotation speed</td>
<td>15 rpm</td>
</tr>
<tr>
<td>Maximum power coefficient</td>
<td>0.48</td>
</tr>
<tr>
<td>Optimal tip speed ratio</td>
<td>8.1</td>
</tr>
<tr>
<td>Air density</td>
<td>1.225 kg/m(^3)</td>
</tr>
<tr>
<td>Inertia of the rotor</td>
<td>117,000,000 kgm</td>
</tr>
</tbody>
</table>
Hardware-in-the-loop Simulation Method for a Wind Farm Controller Using Real Time Digital Simulator

2.3 Power controller of the simplified model

The three phase current source of the modeled 5 MW WPGS is controlled by power controller as represented in Fig. 3. References of DQ-axis current component frame are used for control of the active and reactive power, whose reference is received from the WFC.

As shown in Fig. 3, the reference power of MPPT control is limited by active power commands (P_{ref, wt} and P_{min, wt}) from the WFC. The reactive power of WPGS is controlled to reactive power commands (Q_{ref, wt}). If the active power command from the WFC is smaller than the reference power of the MPPT control, the output power of wind turbine is limited. It causes an increase of the rotation speed of the wind turbine because of difference in torque between the electrical output power and the mechanical power. In that case, the rotation speed of wind turbine is regulated by pitch angle controller.

Fig. 4 shows the block diagram of the pitch angle controller, which increases pitch angle for the purpose of regulating the rotation speed [13]. The pitch angle is limited to 3°/s for realistic response.

3. Implementation of Hardware in the Loop Simulation for Test of Wind Farm Controller

The configuration of HILS setup for test of wind farm controller is depicted in Fig. 5. The WFC is implemented using C# programming language, which is operated by a computer.

The WFC can connect to the real time simulation model of the 100 MW wind farm through an Ethernet switch between RTDS and the integrated controller. It provides the same communication environment in practice. The modeled wind farm is simulated with 50 μs time step in real time.

3.1 Wind farm controller

Fig. 6 shows the control algorithm [8] of the WFC. Total active and reactive power references of the wind farm (P_{wf, ref} and Q_{wf, ref}) are required by grid operator. The active power reference of wind farm is limited to 1 MW/s by ramp rate, and the power is controlled by PI controller. The active power reference of each WPGS is calculated by dispatch control and weight value (PF_{wt}^i) in (5).

\[
P_{wt, ref} = PF_{wt}^i \cdot P_{pf, out}, \quad PF_{wt}^i = \frac{P_{wt, avg}}{P_{wf, avg}} \quad (5)
\]

The available reactive power of the wind farm depends on the active power because of the current capacity of the back to back converter. The available reactive power of the wind farm is sum of each available reactive power of the WPGSs as follows in (6).

\[
Q_{wf, av} = \sum Q_{wt, av}, \quad Q_{wt, av} = \sqrt{P_{rated}^2 - P_{wt, avg}^2} \quad (6)
\]

The reactive power reference of each WPGS is also calculated by dispatch control and weight value (QF_{wt}^i) in (5).
4. Hardware in the Loop Simulation Results

Fig. 7 shows the wind speed at number 1, 8, 20 WPGSs used in the real time simulation. The output powers of the wind farm under MPPT operation mode and dispatch operation mode are compared as shown in Fig. 8. All WPGSs operates MPPT control mode during 0 to 175 s. About 175 s, the power reference of the wind farm is 30 MW, which is supposed that the grid operator requires. As shown in Fig. 8, the active power of wind farm is controlled to its reference. At that time, the dynamic performances such as rotating speed and pitch angle of number 1, 8, 20 WPGSs are shown in Figs. 9-11.

The output power of the #1 wind turbine is unchanged after dispatch operation mode as shown in Fig. 9. However, the pitch angle of #1 wind turbine increases under below rated output power. That means the power reference of #1 wind turbine is limited to about 2 MW from the WFC. In the case of the #8 wind turbine, the output power is gradually decreases after dispatch operation mode. The rotation speed and pitch angle of #8 wind turbine are increase because the output power is limited by the WFC. In the case of the #20 wind turbine, the output power is...
gradually increases despite of dispatch operation mode. It is expected that the available power of the # 20 wind turbine is high. However, at last, the rotation speed is regulated by pitch angle controller under below rated wind speed. That means the output power of # 20 wind turbine is also limited by the WFC.

The power factor and reactive power of the wind farm is shown in Fig. 12. After 32.5 s, the power factor reference is 0.96, which is supposed that the grid operator requires. After then, reactive power increases follow active power for satisfying power factor reference.

5. Conclusion

Performance analysis method to evaluate the WFC using hardware in the loop simulation (HILS) is presented. The integrated controller with 100 MW wind farm is tested and analyzed by using the proposed method. The test results show that the WFC is well operated under HILS environment. The proposed test method in this paper can be effectively utilized to test and develop a wind farm controller under the environment in practice without real wind farm.

References

Gyeong-Hun Kim, Jong-Yul Kim, Jin-Hong Jeon, Seul-Ki Kim, Eung-Sang Kim, Ju-Han Lee, Minwon Park and In-Keun Yu

Gyeong-Hun Kim He received his B.S. and M.S. and Ph.D. degrees in Electrical Engineering from Changwon National University, Korea in 2007, 2009, and 2013, respectively. Currently, he is a senior research engineer with the Smart Distribution Research Center, KERI. His research interests are operation and control of a wind power generation system.

Ju-Han Lee He received B.S degree in electrical engineering from Changwon University. His research interests are wind power generation system and power control scheme.

Jong-Yul Kim He received his B.S. and M.S. and Ph.D. degrees in Electrical Engineering from Pusan National University, Korea in 1997, 1999, and 2010, respectively. Currently, he is a senior research engineer with the Smart Distribution Research Center, KERI.

Minwon Park He received B.S degree in Electrical Engineering from Changwon National University in 1997 and his Master's degree and Ph.D. degrees in Electrical Engineering from Osaka University in 2000 and 2002, respectively.

Jin-Hong Jeon He received his B.S. and M.S. from Sungkyunkwan University in 1995 and 1997, respectively, and his Ph.D. from Pusan National University, Korea, in 2012, in the department of electrical engineering. Currently, he is a principal researcher with the smart distribution research center, KERI.

Seul-Ki Kim He received the B.S., M.S and Ph.D. degrees in electrical engineering from Korea University, Seoul, Korea, in 1998, 2000 and 2010 respectively. Currently, he works as a senior researcher with the smart distribution research center, Korea Electrotechnology Research Institute (KERI).

In-Keun Yu He received B.S degree in Electrical Engineering from Dongguk University in 1981 and his M.S. and Ph.D. degrees in Electrical Engineering from Hanyang University in 1983 and 1986, respectively. His research interests are wavelet transform applications, electric energy storage and control systems, peak load management & energy saving systems, PSCAD/EMTDC and RTDS simulation studies, and renewable energy sources.

Eung-Sang Kim He received the B.S. degree in electrical engineering from Seoul National University of Technology and the M.S. and Ph.D. degree in electric engineering from Soong-Sil University. Currently, he works as a director in the smart distribution research center, Korea Electrotechnology Research Institute(KERI), Changwon, Korea.